Adaptive Robust Unscented Kalman Filter for AUV Acoustic Navigation
نویسندگان
چکیده
منابع مشابه
A new AUV navigation system exploiting unscented Kalman filter
The development of precise and robust navigation strategies for Autonomous Underwater Vehicles (AUVs) is fundamental to reach the high level of performance required by complex underwater tasks, often including more than one AUV. One of the main factors affecting the accuracy of AUVs navigation systems is the algorithm used to estimate the vehicle motion, usually based on kinematic vehicle model...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملA Hybrid Adaptive Unscented Kalman Filter Algorithm
In order to overcome the limitation of the traditional adaptive Unscented Kalman Filtering (UKF) algorithm in noise covariance estimation for statement and measurement, we propose a hybrid adaptive UKF algorithm based on combining Maximum a posteriori (MAP) criterion and Maximum likelihood (ML) criterion, in this paper. First, to prevent the actual noise covariance deviating from the true value...
متن کاملFuzzy Adaptive Variational Bayesian Unscented Kalman Filter
We consider the problem of nonlinear filtering under the circumstance of unknown covariance statistic of the measurement noise. A novel adaptive unscented Kalman filter (UKF) integrating variational Bayesian methods and fuzzy logic techniques is proposed in this paper. It is called fuzzy adaptive variational Bayesian UKF (FAVBUKF). Firstly, the sufficient statistics of the measurement noise var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2019
ISSN: 1424-8220
DOI: 10.3390/s20010060